

Antiviral approaches

Luca Arcaini

Department of Molecular Medicine, University of Pavia

& Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo

Disclosures of NAME SURNAME

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Celgene			x			x	
Roche			x			x	
Gilead	x					x	
Pfizer						x	
Sandoz						x	

Criterion for causality	Comment	Microbial agent and evi	dence for causality
Bradford Hill		HIV	HCV
1. Biological plausibility	In vitro, molecular, or animal data	+	+
2. Analogy	Comparison with other disease models	+	+
3. Coherence	Lack of conflict with other information	+	+
4. Specificity	~ 1 : 1 correspondence of agent to disease	+	
5. Consistency	Repeated demonstration across studies	+	
6. Strength of association	Magnitude of relative risk	+	
7. Biological gradient	Dose-response relationship	+	
8. Temporality	Exposure precedes disease	+	+
9. Experimental evidence	Human experiment		
Fredericks and Relman		Borrelia burgdorferi	Chlamydia psittac
1. Molecular detection in disease	Microbial sequences in host tissues	+	+
2. Localization	Microbe localized within tumour	+	+
3. Only low level detection in the absence of disease	Quantitative testing	+	+
4. Resolution/relapse	Detection parallels disease		+
5. Temporality	Detection precedes disease		
6. Coherence	Microbe characteristics consistent with disease	+	+
7. Reproducibility	Repeated demonstration across studies		

From Hjalgrim & Engels J Intern Med 2009

Bradford Hill Proc Royal Soc Med 1965 Fredericks Relman Clin Microbiol Rev 1996

IARC classification

Six human viruses classified as "carcinogenic to humans" (Group 1) based on sufficient evidence supporting their etiologic association with human cancer:

- EBV
- HBV
- HPV of several types
- HTLV-1
- HCV (HCC and NHL)
- HHV-8

WHO IARC Monograph Working Group. Lancet Oncol. 2009

META-ANALYSIS

- All cohort studies: RR 1.9
- All case-control studies: RR 2.5
- All studies: RR 2.5
- NHL attributable to HCV in countries with

high prevalence: 10%

NHL attributable to HCV in countries with

low prevalence: <1%

Dal Maso, Cancer Epidemiol Biomarkers Prev 2006

International Lymphoma Epidemiology Consortium (InterLymph)

- Pooled case-control study
- 4,784 NHL and 6,269 controls
- HCV infection in 172 cases of NHL (3.6%) and 169 (2.7%) controls
- HCV is associated with:

Marginal zone lymphoma (OR, 2.47) Lymphoplasmocytoid lymphoma (OR 2.57) Diffuse large B cell lymphoma (OR 2.24)

de Sanjose et al, Clin Gastroenterol Hepatol. 2008

Registry of HCV-associated lymphomas

- Since January 2008, 250 consecutive pts with lymphoma and HCV infection diagnosed in the participating centres
- Median age at dg 68 yrs (range 32-90)
- **DLBCL** 44%
- MZL 28%
- Low-grade NHL NOS 11%

Manuscript in preparation

CLINICAL FEATURES

- Extranodal lymphoma: 63%
- Detection of HCV+ before NHL in 67%
- At dg of lymphoma, HCV-RNA+ 90%
- Cryoglobulinemia and serum monoclonal component associated with indolent histotypes (p=0.002)

Lipoma-like marginal zone lymphoma

- 12 pts with primary subcutaneous MZL
- 10 F, 2 M; median age 69 yrs
- HCV serology: 12/12 positive
- HCV-RNA+: 10/10
- Single or multiple subcutaneous nodules
- Clinical appearance similar to lipomas
- Regression with antiviral treatment

Paulli et al, Annals of Oncology 2010

Lipoma-like marginal zone lymphoma

HCV+ SLVL treated with AT

- 9 pts with SLVL and HCV infection
- IFN-a 3 MU 3 times/wk for 6 months
- 7 pts: HCV-RNA- + CR
- 2 NR \rightarrow Ribavirin \rightarrow HCV-RNA- 1 CR, 1 PR
- 1 relapse with HCV-RNA+
- No molecular response
- 6 pts with SLVL HCV-neg: NR

Hermine et al, NEJM 2002

SLVL associated with MC and HCV infection: a new entity?

- 18 pts with SLVL
- Median age 58 years
- Predominantly female (F 78%)
- Symptomatic type II MC : 72%
- Symptoms preceding dg of SLVL in 7 (mean 3.5 years)
- Genotype 1: 54%
- Haematological + virological response: 78%
- HCV genotype 1: 54% (4 / 7 responders)
- Only 2 molecular responses

Saadoun et al, Blood 2004

EFFECT OF ANTIVIRAL TREATMENT ON SURVIVAL OF PATIENTS WITH INDOLENT B-CELL LYMPHOMAS ASSOCIATED WITH HEPATITIS C VIRUS INFECTION: A MULTICENTRE COHORT STUDY OF THE FONDAZIONE ITALIANA LINFOMI

FIL multicentric study

- 704 HCV+ pts with indolent NHL
- HCV-RNA+: 92%
- Genotype 1: 50%
- Genotype 2: 44%
- Cryoglobulinemia in 104 pts
- HBsAg+ 2%
- Cirrhosis 4%

Arcaini et al Annals of Oncology, 2014

Multivariate analysis

Prognostic variables independently

associated with a shorter OS:

- Age >60 yrs
- Albumin <3.5 g/dl
- No AT at any time

AT as NHL treatment (1st line)

- 33 with IFN and 67 with peg-IFN
- 60 MZL
- Genotype: 2 in 52 pts and 1 in 37
- 7 interrupted for NHL progression
- CR: 44/100
- PR: 33/100
- HCV-RNA clearance in 80 pts related to lymphoma response

AT as NHL treatment (1st line)

- Lymphoma response not different
 between MZL and non-MZL (ORR= 82% vs.
 70%)
- Lower in SMZL respect to other MZL cases (ORR: 65% vs. 92%; p=0.02)
- ORR 83% in genotype 2 carriers and 70% in genotype 1 carriers (p=0.3)

Journal of Viral Hepatitis, 2016

JOURNAL OF VIRAL HEPATIT

doi:10.1111/jvh.12518

The anti-lymphoma activity of antiviral therapy in HCVassociated B-cell non-Hodgkin lymphomas: a meta-analysis

J. Peveling-Oberhag,¹ L. Arcaini,^{2,3} K. Bankov,¹ S. Zeuzem¹ and E. Herrmann⁴ ¹Department of Internal Medicine 1, Goethe-University Hospital, Frankfurt, Germany; ²Department of Hematology Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy; ³Department of Molecular Medicine, University of Pavia, Pavia, Italy; and ⁴Institute for Biostatistics and Mathematical Modelling, Goethe-University, Frankfurt, Germany

	N° pts*	Year	Antiviral treatment	Diagnosis	Virologic response	NHL response
Bauduer et al. [17]	1	1996	IFN	MZL/MALT	1	1 PR
Caramaschi et al. [18]	1	1999	IFN	MZL/MALT	NA	1 CR
Moccia et al. [24]	3	2001	IFN	SMZL	NA	2 CR
Patriarca et al. [26]	1	2002	IFN	LPL	1	1 CR
Casato et al. [19]	1	2002	IFN	MZL	HCV-RNA decrease	1 CR
Hermine et al. [10] [9] [8]	9	2004	IFN	SLVL	7	7 CR
Pitini et al. [29]	2	2004	IFN	SMZL	2	2 CR
Kelaidi et al. [21]	8	2004	IFN + RBV	SMZL $(n = 4)$, MZL/MALT $(n = 4)$	5 SVR, 2 NSVR	5 CR
Tursi et al. [33]	16	2004	IFN + RBV	MZL/MALT	11	16 CR
Saadoun et al. [30]	18	2005	IFN $(n = 8)$ IFN + RBV $(n = 10)$	SLVL	14 CR, 4 NSVR	14 CR, 4 PR
Svoboda et al. [31]	1	2005	Peg-IFN + RBV	MZL/MALT	1	CR
Vallisa et al. [34]	13	2005	Peg-IFN + RBV	SMZL $(n = 4)$, MZL/MALT (n = 4), FL $(n = 1)$, LPL $(n = 4)$	7 SVR, 1 NSVR	7 CR, 2 PR
Mazzaro et al. [23]	18	2009	IFN + RBV $(n = 8)$ Peg-IFN + RBV $(n = 10)$	SLVL $(n = 1)$, FL $(n = 1)$, LPL $(n = 16)$	3 SVR, 4 NR, 1 NSVR 6 SVR, 2 NR, 2 NSVR	3 CR, 2 PR 6 CR, 2 PR
Paulli et al. [27]	2	2009	Peg-IFN + RBV	MZL/MALT	2 CR	1 CR, 1 PR
Oda et al. [25]	1	2010	Peg-IFN + RBV	B-NHL (liver)	SVR	CR
Pellicelli et al. [28]	9	2011	Peg-IFN + RBV	SMZL $(n = 3)$, MZL $(n = 4)$, FL $(n = 2)$	7 SVR, 2 NSVR	5 CR, 2 PR
Mauro et al. [22]	1	2012	Peg-IFN + RBV	LPL	SVR	CR
Coskun et al. [20]		2013	Peg-IFN + RBV	MZL	SVR	CR
Arcaini et al. [12]	134	2014	Peg-IFN + RBV	SMZL $(n = 35)$, MALT $(n = 31)$, LPL $(n = 9)$, FL $(n = 12)$, Other $(n = 33)$	102 SVR, 30 NSVR, 2 NA	95 CR/PR
Michot et al. [13]	14	2015	Peg-IFN + RBV	MZL	11 SVR, 3 NSVR	11 CR/PR

Tot 254 pts

Lymphoma response

SVR and histotype

Proportion 95%-CI

157 MZL

Study Lymphoma response Total

Antiviral response: SV	R			
Patriarca et al. [24]	1	1		1.00 [0.03; 1.00]
Casato et al. [17]	1	1		1.00 [0.03; 1.00]
Bauduer [15]	1	1		1.00 [0.03; 1.00]
Pitini et al. [27]	2	2		1.00 [0.16; 1.00]
Hermine et al. [8]	7	7		1.00 [0.59; 1.00]
Kelaidi et al. [19]	5	8		0.62 [0.24; 0.91]
Tursi et al. [31]	11	11		1.00 [0.72; 1.00]
Saadoun et al. [28]	14	14	\longrightarrow	1.00 [0.77; 1.00]
Mazzaro et al. [21]	9	9		1.00 [0.66; 1.00]
Oda <i>et al.</i> [23]	1	1		1.00 [0.03; 1.00]
Mauro <i>et al.</i> [20]	1	1		1.00 [0.03; 1.00]
Svoboda et al. [29]	1	1	·	1.00 [0.03; 1.00]
Paulli et al. [25]	2	2		1.00 [0.16; 1.00]
Pellicelli et al. [26]	7	7		1.00 [0.59; 1.00]
Vallisa et al. [32]	6	8		0.75 [0.35; 0.97]
Arcaini et al. [10]	84	102		0.82 [0.74; 0.89]
Coskun <i>et al.</i> [18]	1	1		1.00 [0.03; 1.00]
Michot et al. [11]	11	11		1.00 [0.72; 1.00]
Fixed effect model		188	~	0.83 [0.76; 0.88]

Heterogeneity: I-squared = 0%, tau-squared = 0, P = 0.9386

Antiviral response: Non-SVR

Hormino at al [9]	0	2	·	0.00.10.00.0.841
Hermine et al. [0]	0	2		0.00 [0.00, 0.04]
Tursi <i>et al.</i> [31]	2	5	· · · · ·	0.40 [0.05; 0.85]
Saadoun et al. [28]	4	4		1.00 [0.40; 1.00]
Mazzaro et al. [21]	4	9		0.44 [0.14; 0.79]
Pellicelli et al. [26]	0	2		0.00 [0.00; 0.84]
Vallisa et al. [32]	0	3	H	0.00 [0.00; 0.71]
Arcaini et al. [10]	20	30		0.67 [0.47; 0.83]
Michot et al. [11]	0	3		0.00 [0.00; 0.71]
Fixed effect model		58		0.53 [0.39; 0.67]
	00 10/ /			

Heterogeneity: I-squared = 36.1%, tau-squared = 0.4925, P = 0.1408

		1	1		
0	0.2	0.4	0.6	0.8	1

83 % vs 53%

Study Lymphoma response Total Proportion 95%-CI **MZL** patients Casato et al. [17] 1.00 [0.03; 1.00] Caramaschi et al. [16] 1.00 [0.03; 1.00] 1 Bauduer [15] 1.00 [0.03; 1.00] 1 Pitini et al. [27] 2 1.00 [0.16: 1.00] 2 Moccia et al. [22] 2 0.67 [0.09; 0.99] 3 Hermine et al. [8] 7 9 0.78 [0.40; 0.97] 5 0.62 [0.24; 0.91] Kelaidi et al. [19] 8 Saadoun et al. [28] 1.00 [0.81: 1.00] 18 18 Mazzaro et al. [21] 1 1.00 [0.03; 1.00] Svoboda et al. [29] 1 1.00 [0.03; 1.00] 1 2 1.00 [0.16; 1.00] Paulli et al. [25] 2 Pellicelli et al. [26] 6 7 0.86 [0.42: 1.00] Vallisa et al. [32] 0.75 [0.35; 0.97] 6 8 Arcaini et al. [10] 68 80 0.85 [0.75; 0.92] Coskun et al. [18] 1.00 [0.03: 1.00] 1 1 Michot et al. [11] 11 14 0.79 [0.49; 0.95] Fixed effect model 157 0.81 [0.74; 0.87] Heterogeneity: I-squared = 0%, tau-squared = 0, P = 0.9824 **Non-MZL** patients Patriarca et al. [24] 1.00 [0.03; 1.00] 1 Tursi et al. [31] 13 16 0.81 [0.54; 0.96] 0.71 [0.44: 0.90] Mazzaro et al. [21] 12 17 Oda et al. [23] 1 1.00 [0.03; 1.00] Mauro et al. [20] 1.00 [0.03; 1.00] 1 Pellicelli et al. [26] 1 2 0.50 [0.01: 0.99] Vallisa et al. [32] 3 5 0.60 [0.15; 0.95] Arcaini et al. [10] 38 54 0.70 [0.56; 0.82] **Fixed effect model** 97 0.71 [0.61: 0.79] Heterogeneity: I-squared = 0%, tau-squared = 0, P = 0.9809 0.2 0.4 0.6 0.8 1

81 % vs 71%

Antiviral therapy and risk of lymphoma

- 501 HCV+ pts never treated
- 2,708 HCV+ pts treated with IFN
- Cumulative rates at 5, 10 and 15 yrs:
- Non-IFN group: 0.6%, 2.3% and 2.6%
- IFN-group with SVR: 0%, 0% and 0%
- IFN-group with persistent infection: 0.4%,
 1.5% and 2.6%

Kawamura et al, AJM 2007

HCV-associated lymphoma present with mild liver

- MD Anderson Cancer Center (2008-2014)
- 89 pts
- Genotype 1 62%
- DLBCL 62%
- Detectable HCV RNA 90%
- Advanced liver disease (Metavir stage \geq 3) 18%
- All 53 patients with chronic HCV infection documented before lymphoma diagnosis were seen by HCV treating physicians. Providers did not recommend AVT in almost one half of cases (44%), mostly because of the lack of advanced liver disease at HCV diagnosis (38%)

Torres et al, Liv Int 2015

Antiviral therapy in HCV+ iNHL: guidelines

ESMO Consensus guidelines marginal zone lymphoma

Dreyling et al, Ann Onc 2013

1.11 Consensus statement

In patients with NMZL or SMZL and concurrent HCV-related chronic hepatitis who do not need immediately conventional treatment of lymphoma, antiviral treatment with pegylated interferon and ribavirin should be considered as first treatment

Comprehensive Network[®] 2015

"the panel recommends initial antiviral therapy in asymptomatic patients with lowgrade HCV-positive indolent B-cell NHL"

Antiviral therapy (AVT):

standard 1st line treatment in asymptomatic patients with iNHL HCV+ (who do not need immediately conventional treatment of lymphoma)

Direct-Acting Antiviral Agents: mechanisms of action

IFN-free antiviral therapy in HCV+ NHL : 1st case report (SMZL)

- 42 y, M
- HCV genotype **1b**, F0
- SMZL, spleen 17.5 cm, lymphocytosis (5.65 x 10⁹/l)
- IFN-free regimen:
 FDV + DLV + RBV (16 w)
- SVR (4w)
- Hematologic response
 (spleen, lymphocytes)
 → related to SVR

Rossotti R et al, J Hepat 2014

Remission of Follicular Lymphoma after Treatment for Hepatitis C Virus Infection

Maciocia N et al, NEJM 2016

Regular Article

S blood

LYMPHOID NEOPLASIA

Interferon-free antiviral treatment in B-cell lymphoproliferative disorders associated with hepatitis C virus infection

Luca Arcaini,^{1,2,*} Caroline Besson,^{3,*} Marco Frigeni,¹ Hélène Fontaine,⁴ Maria Goldaniga,⁵ Milvia Casato,⁶ Marcella Visentini,⁶ Harrys A. Torres,⁷ Veronique Loustaud-Ratti,⁸ Jan Peveling-Oberhag,⁹ Paolo Fabris,¹⁰ Roberto Rossotti,¹¹ Francesco Zaja,¹² Luigi Rigacci,¹³ Sara Rattotti,² Raffaele Bruno,^{14,15} Michele Merli,¹⁶ Céline Dorival,¹⁷ Laurent Alric,¹⁸ Arnaud Jaccard,⁸ Stanislas Pol,⁴ Fabrice Carrat,^{17,19} Virginia Valeria Ferretti,¹ Carlo Visco,^{20,†} and Olivier Hermine^{21,22,†}

Clinical features

	n	%
Male/female	18/28	39/61
MZLs	37	80
Splenic	17	37
Nodal	1	2
Extranodal	15	32
Leukemic	4	9
Others*	5	11
CLL/SLL	4	9
Ann Arbor stage III-IV	35/42	83
B symptoms	6	13
ECOG performance status ≥ 2	1	2
Hemoglobin <12 g/dL	14/45	31
Platelets $<$ 100 $ imes$ 10 9 /L	10/45	22
Lactate hydrogenase > UNL	10/40	25
β_2 -Microglobulin > UNL	20/26	77
Albumin <3.5 g/dL	6/40	15
HCV genotype		
1	29	63
2	12	26
3	3	7
4	2	4
Cirrhosis	7	15
Previous chemotherapy	10	22
Previous IFN-based antiviral treatment	12	26
DAAs		
Sofosbuvir-based regimen†	39	85
Other regimen‡	7	15

Lymphoma response

	CR, n	PR, n	SD, n
All (N = 46)	12	19	11
MZLs (n = 37)	11	16	6
Splenic (n = 17)	4	7	5
Nodal (n = 1)	1	0	0
Extranodal (n = 15)	5	7	0
Leukemic (n = 4)	1	2	1
Follicular lymphoma (n = 2)	0	2	0
Lymphoplasmacytic lymphoma (n = 2)	0	1	1
Low-grade B-NHL NOS ($n = 1$)	1	0	0
CLL/SLL (n = 4)	0	0	4

ORR 67%: 26 % CR, 41% PR - ORR in MZL 73%; no response in CLL

Predictive factors

- Univariate analysis: higher risk of non response in pts with nodal disease and with low hb levels
- In contrast, extranodal disease and serum MC a trend toward a lower risk of nonresponse

 Multivariate analysis:, risk of nonresponse lower in pts with a serum MC (OR, 0.1; 95% CI, 0.1-1.0; P 5 .048) and a trend with extranodal disease 14th International Conference of Malignant Lymphoma (Lugano, 14-7 June 2017)

 Frigeni et al. "Interferon-Free Antiviral Treatment in B-cell Lymphoproliferative Disorders associated with Chronic Hepatitis-C Virus Infection" (nr. 136). oral presentation in the SESSION 12: "MARGINAL ZONE LYMPHOMA", Saturday, June 17th from 10:15 to 11:15 in Room A

 Merli et al. "Direct-acting Antivirals during or after Immunochemotherapy in Hepatitis C Virus-associated Diffuse Large B-cell Lymphomas" poster presentation A multicenter study to evaluate the antiviral activity of an interferon-free treatment with sofosbuvir + ledipasvir ± ribavirin (G1, 3 and 4) and sofosbuvir + ribavirin (G2) for patients with hepatitis C virus-associated indolent B-cell lymphomas

ID Study: FIL_BArT (B-cell lymphoma Antiviral Treatment)

EudraCT number: 2015-004830-81

STUDY COORDINATORS

Luca Arcaini Hematology, University of Pavia

Raffaele Bruno Infectious Diseases, University of Pavia

> PATHOLOGY REVIEW Marco Paulli, Pavia

WRITING COMMITTEE Alessandro Pulsoni, Roma Carlo Visco, Vicenza Sara Rattotti, Pavia Anna Linda Zignego, Firenze Michele Merli, Varese MOLECULAR STUDIES

Simone Ferrero, Torino

